aV东京热强奸精品_久久久这里只有免费精品29_日韩男人的天堂_伊人中文无码综合网

客服電話:400-000-2365

染料廢水脫色方法

中國污水處理工程網(wǎng) 時間:2017-12-28 9:01:37

污水處理技術(shù) | 匯聚全球環(huán)保力量,降低企業(yè)治污成本

  1 引言(Introduction)

  隨著經(jīng)濟的快速發(fā)展,我國已成為染料生產(chǎn)大國,但隨之而來產(chǎn)生了大量的染料廢水.除了大量殘留的染料外,染料廢水中還含有其他有毒有害成分,如重金屬離子.因此,染料廢水具有成分復(fù)雜、色度、濃度高、難生物降解、水量水質(zhì)變化大等特點,成為較難處理的工業(yè)廢水之一。

  孔雀綠是常見的三苯基甲烷類染料之一,常作為絲織品、毛織品、棉布等的染色劑.雖然孔雀綠具有高毒性、致突變性和較強的生物毒性等特性,但因其成本低廉、殺菌效果顯著,因此,目前仍被廣泛應(yīng)用在紡織和水產(chǎn)養(yǎng)殖業(yè).重金屬通常應(yīng)用于紡織染料工業(yè)的不同生產(chǎn)過程中,因此,染料廢水中存在各種不同濃度的重金屬,其中,Cr(Ⅵ)的含量最高,而Cu(Ⅱ)次之.研究發(fā)現(xiàn),極少量的重金屬離子就能產(chǎn)生明顯的中毒反應(yīng),且通過食物鏈被較高級的生物成倍地富集在體內(nèi),且會使生物體內(nèi)的酶、蛋白質(zhì)等失活,同時它無法被微生物降解,最終累積在器官中,嚴(yán)重損害著人體健康和生態(tài)環(huán)境。染料廢水中殘留染料與重金屬離子經(jīng)常并存,這種復(fù)合污染具有更高的生物、細胞毒性。

  染料脫色一般分為物理化學(xué)法和生物法,物化法使用方便、見效快,但成本高、二次污染嚴(yán)重;生物法運行費用低,處理效果顯著且不會造成二次污染,是環(huán)境友好的處理方法,因而受到廣泛關(guān)注。但重金屬通過影響微生物體內(nèi)酶的生成或酶的活性抑制微生物對染料的降解。因此,如何提高染料與重金屬構(gòu)成的復(fù)合污染中染料的生物降解效率成為該類廢水處理的難點之一.

  EDTA(乙二胺四乙酸二鈉)是一種常見的鰲合劑,生成的絡(luò)合物在中性或堿性條件下穩(wěn)定系數(shù)非常大.在一般情況下,這些螯合物的配合比都是1:1(鞠峰等, 2011).EDTA與配位離子形成環(huán)狀結(jié)構(gòu),金屬離子取代配位原子上的氫而進入鰲合環(huán)中,使金屬離子鈍化,降低其毒害作用。但目前關(guān)于采用環(huán)境中廣泛存在的螯合劑減少與染料共存的重金屬離子的毒性,提高染料降解效率的研究少有報道.根據(jù)之前的研究發(fā)現(xiàn),某些微生物可能會將Cr(Ⅵ)還原成Cr(Ⅲ),因此,本研究擬采用EDTA降低Cr(Ⅵ)的毒性,從而提高Cr(Ⅵ)共存時微生物降解孔雀綠的效率.采用篩選出的高效好氧菌Burkholderia cepacia C09G降解孔雀綠,研究EDTA對重金屬共存時降解孔雀綠的影響,同時優(yōu)化EDTA鰲合Cr(Ⅵ)的最佳濃度.通過此研究以提高在重金屬共存時染料的去除效率,為復(fù)雜廢水的治理奠定一定的理論基礎(chǔ).

  2 材料與方法(Materials and methods)2.1 試劑與儀器

  試劑:葡萄糖、KH2PO4、Na2HPO4·2H2O、MgSO4、FeCl3·6H2O、KNO3、孔雀綠(MG)、K2CrO7、EDTA等均為分析純.

  儀器:SKY-2102型立式雙層恒溫培養(yǎng)搖床、SPX-2508-Z型生化培養(yǎng)箱、722N型可見光光度計、PHS-3C型精密pH計、AA-240型原子吸收光譜儀.

  2.2 試驗菌種與培養(yǎng)基

  本試驗所用菌種為Burkholderia cepacia C09G(B. Cepacia C09G).LB培養(yǎng)基:牛肉膏5 g·L-1,蛋白胨10 g·L-1,NaCl 10 g·L-1,分裝在100 mL的三角燒瓶中,每瓶裝量為30.0 mL,121 ℃滅菌15 min.降解培養(yǎng)基:葡萄糖6.0 g·L-1,KH2PO4 1.8 g·L-1,Na2HPO4·12H2O 3.5 g·L-1,F(xiàn)eCl3·6H2O 0.01 g·L-1,MgSO4 0.1 g·L-1,KNO3 3.5 g·L-1,調(diào)節(jié)至pH 6.0,分裝于250 mL的三角燒瓶中,121 ℃滅菌15 min.

  2.3 試驗方法2.3.1 菌液的制備

  將菌株B. Cepacia C09G接種到滅菌后的LB培養(yǎng)基中,于30 ℃、150 r·min-1的恒溫振蕩培養(yǎng)箱中培養(yǎng)至對數(shù)期,并將所得菌液轉(zhuǎn)移至50.0 mL離心管中,7000 r·min-1離心10 min,棄除上清液,用無菌水稀釋成菌懸液,4 ℃保存?zhèn)溆?

  2.3.2 MG和Cr(Ⅵ)去除試驗

  將已算好體積的藥品加入降解培養(yǎng)基中,每支玻璃離心管(無菌)中加入15.0 mL的降解培養(yǎng)液,再加入菌液(初始OD600=0.7,體積比6%),塞上棉花塞,放入搖床(150 r·min-1,30 ℃)培養(yǎng)0、12、24、36、48、60 h后分別測定OD600、MG和Cr(Ⅵ)濃度.上述每個試驗均做3個平行,結(jié)果取其平均值,并計算標(biāo)準(zhǔn)偏差.

  2.4 生物量、MG及Cr(Ⅵ)的測定

  從恒溫搖床中取出各時段的降解培養(yǎng)基,在最大吸收波長600 nm處用可見分光光度計測其吸光度,以波長600 nm處的光密度OD600表示細菌生長量.

  取上清液,孔雀綠(MG)采用分光光度計測定619 nm處最大吸收峰的吸光度值,以A619表示;利用原子吸收光譜儀測定溶液剩余Cr(Ⅵ)濃度.去除率R計算公式如下:

(1)

  式中,C0表示初始時MG或Cr(Ⅵ)的濃度(mg·L-1);Ct表示t時MG或Cr(Ⅵ)的濃度(mg·L-1).

  2.5 表征

  掃描電子顯微鏡(SEM)觀察:采用JSM-7500型掃描電子顯微鏡觀察樣品的表面形貌和微觀形態(tài);X射線能量色散譜(EDS)分析:利用與SEM聯(lián)機的X射線能量散射儀分析樣品表面的元素種類和含量;傅里葉變換紅外光譜(FTIR)分析:采用Thermo Nicolet 5700紅外光譜儀,獲取試樣的FTIR譜圖,溴化鉀壓片,掃描范圍為4000~400 cm-1;X射線光電子能譜(XPS)分析:采用VG ESCALAB 250型X射線光電子能譜儀對吸附孔雀綠和Cr(Ⅵ)后的Burkholderia cepacia C09G進行分析.

  3 結(jié)果與討論(Results and discussion)3.1 不同條件對孔雀綠降解過程的影響

  所有實驗均用Burkholderia cepacia C09G降解0.1 mmol·L-1孔雀綠,僅加入孔雀綠的為空白實驗,其他實驗再分別加入0.5 mmol·L-1 Cr(Ⅵ)、0.5 mmol·L-1 EDTA,以及同時加入0.5 mmol·L-1 Cr(Ⅵ)和0.5 mmol·L-1 EDTA,放入搖床中好氧培養(yǎng)0、12、24、36、48、60 h后取出測定OD600、A619、Cr濃度.

  3.1.1 OD600

  如圖 1所示,在空白實驗中(沒有重金屬Cr(Ⅵ)或者EDTA存在的條件下),即僅加入0.1 mmol·L-1的孔雀綠(MG)時,B. Cepacia C09G在前36 h快速生長,OD600接近了0.7,而后因為MG基本降解完,缺乏營養(yǎng)物質(zhì)生物量增長緩慢,60 h后最終OD600值為0.78;僅加入0.5 mmol·L-1 Cr(Ⅵ),對微生物的生長有很強的抑制作用,生物量很低,僅為0.15;僅加入0.5 mmol·L-1 EDTA,毒性雖然比Cr(Ⅵ)更小,但仍有一定的抑制作用,60 h時OD600為0.31.據(jù)報道,EDTA和EDTA-Metal對土壤微生物都是有毒的(Grcman et al., 2001).當(dāng)同時添了EDTA和Cr(Ⅵ)時,OD600為0.42,大于單獨加入Cr(Ⅵ)或者EDTA時,說明其生物毒性比單獨加入Cr(Ⅵ)或EDTA有所降低,因此,可以推測EDTA可以有效降低Cr(Ⅵ)的毒性.

  圖 1不同條件下孔雀綠(MG)的OD600值

  3.1.2 孔雀綠(MG)去除率

  圖 2a為不同條件對孔雀綠的降解影響,在僅加入0.1 mmol·L-1 MG的情況下,MG在24 h的去除率達到96.2%;只添加0.5 mmol·L-1 Cr(Ⅵ),60 h時MG的去除率均為6.7%,單獨添加0.5 mmol·L-1 EDTA時,60 h時MG的去除率為48.4%,說明Cr(Ⅵ)和EDTA均會抑制B. Cepacia C09G對孔雀綠的降解.同時添加EDTA和Cr(Ⅵ)時,60 h MG的去除率上升到18.8%,相對于單獨加Cr(Ⅵ)的降解率有所提高,可以看出,EDTA確實可以有效地降低Cr(Ⅵ)的抑制作用,從而提高對孔雀綠的降解效率.也有研究證實,加入EDTA可以降低5 μmol·L-1 Cd、Cu和Zn對細菌Escherichia coli的毒性(Campbell et al., 2000).

  圖 2不同條件下孔雀綠降解率(a)和Cr去除率(b)

  3.1.3 Cr去除率

  圖 2b為離心后的降解培養(yǎng)基中總Cr濃度,可能是由于EDTA可以有效螯合Cr,因此,減少了B. Cepacia C09G吸附Cr的效率,去除率從25.7%降低到15.2%.

  3.2 0.5 mmol·L-1 EDTA螯合的最佳Cr濃度

  將菌株C09G加入初始Cr(Ⅵ)濃度分別為0.5、0.6、0.7、0.8、0.9 mmol·L-1,EDTA濃度為0.5 mmol·L-1,MG濃度為0.1 mmol·L-1的降解培養(yǎng)基中,放入搖床中好氧培養(yǎng)0、12、24、36、48、60 h后取出測定OD600、A619、Cr的濃度.

  3.2.1 OD600

  如圖 3a所示,隨著加入Cr(Ⅵ)濃度的升高,生物量OD600先升高后降低,加入Cr(Ⅵ)濃度為0.7 mmol·L-1時達到最高.在加入的Cr(Ⅵ)濃度分別為0.5、0.6、0.7、0.8、0.9 mmol·L-1時,60 h時OD600分別為0.45、0.55、0.72、0.62、0.43,微生物生長良好,因此,EDTA可適度地降低Cr的毒性.但總的來說,Cr單獨存在,或者與EDTA形成螯合物,對微生物都是有毒的,因而生物量都偏低.

  圖 3不同初始Cr(Ⅵ)濃度下OD600值(a)、孔雀綠降解率(b)和Cr去除率(c)

  3.2.2 孔雀綠(MG)去除率

  由圖 3b可知,除Cr(Ⅵ)濃度為0.7、0.8 mmol·L-1外,其余Cr(Ⅵ)濃度條件下的MG降解并不理想,均小于20%;而Cr(Ⅵ)初始濃度為0.7 mmol·L-1時,MG的去除率為35.3%,當(dāng)濃度增加到0.8 mmol·L-1時,MG的降解率下降到了30.7%.因此,確定0.5 mmol·L-1 EDTA存在下,螯合的最佳Cr(Ⅵ)濃度為0.7 mmol·L-1. EDTA和重金屬的螯合比例一般為1:1(鞠峰等, 2011),Cr(Ⅵ)以陰離子存在,不能和EDTA螯合,但根據(jù)報道,Cr(Ⅵ)會被微生物還原成Cr(Ⅲ)(甘莉等, 2014).因此推測,部分Cr(Ⅵ)會被微生物還原成Cr(Ⅲ),被還原的Cr(Ⅲ)跟EDTA螯合,減少了毒性.EDTA或者Cr(Ⅵ)過量,MG去除率都會降低.

  3.2.3 Cr去除率

  如圖 3c所示,Cr(Ⅵ)初始濃度分別為0.5、0.6、0.7、0.8、0.9 mmol·L-1時,總Cr的去除率分別為15.8%、21.6%、24.6%、21.8%、20.9%.Cr去除率隨著加入的Cr(Ⅵ)濃度增加而增加,當(dāng)Cr(Ⅵ)為0.7 mmol·L-1時Cr去除率最高,之后開始下降,但降低幅度很小.可能是因為高濃度的Cr傳質(zhì)效果更好,因而更易于被微生物富集.相對于無EDTA存在情況下,B. Cepacia C09G對Cr吸附率略有下降,但在最佳的螯合濃度下,由于減少了Cr的毒性,增加了生物量,使得吸附率有所提高.但總的來說,在EDTA存在條件下,B. Cepacia C09G對Cr吸附能力均較低.

  3.3 降解過程的表征3.3.1 XPS

  為了檢測Cr(Ⅵ)價態(tài)變化,采用X射線光電子能譜(XPS)分析吸附孔雀綠和Cr(Ⅵ)后的Burkholderia cepacia C09G,圖 4是菌體表面Cr的2p軌道核心區(qū)域的XPS光譜圖及其擬合曲線.可以看出,Cr2p1/2的結(jié)合能在584.0 eV處,而Cr2p3/2的結(jié)合能在577.4 eV處,可知兩個能值與Cr(Ⅲ)的結(jié)合能相對應(yīng),這說明在菌體表面應(yīng)該存在Cr(Ⅲ),而吸附前,培養(yǎng)基中只有Cr(Ⅵ),因此,推測培養(yǎng)基中Cr(Ⅵ)在Burkholderia cepacia C09G的作用下被吸附到其表面后,利用菌體內(nèi)的還原酶,Cr(Ⅵ)被還原為Cr(Ⅲ).其他文獻也有類似報道,細菌可利用細胞NADH作為還原劑,在好氧或厭氧狀態(tài)下,將高毒性的Cr(Ⅵ)直接還原成低毒的Cr(Ⅲ)(Lira-Silva et al., 2011),如利用Burkholderia vietnamiensis C09V同時去除結(jié)晶紫和Cr(Ⅵ)時,該菌在降解結(jié)晶紫的同時將Cr(Ⅵ)還原成Cr(Ⅲ)(甘莉等, 2014).

  圖 4吸附后Burkholderia cepacia C09G的Cr2p能譜圖

  3.3.2 SEM

  由圖 5a可知,當(dāng)溶液中只有孔雀綠存在時,B. Cepacia C09G細胞形態(tài)幾乎沒有破損,細胞表面完整圓滑飽滿、生長良好.當(dāng)孔雀綠溶液中加入0.5 mmol·L-1 EDTA時,細胞形態(tài)有些略微的損傷(圖 5b).當(dāng)加入Cr(Ⅵ)后,微生物細胞表面嚴(yán)重受損,細胞表面凹凸不平且變得干癟(圖 5c).如圖 5d所示,同時加入0.5 mmol·L-1 EDTA和0.5 mmol·L-1 Cr(Ⅵ)后,與只加EDTA相比,對細胞形態(tài)影響相對較小,與不加EDTA與Cr(Ⅵ)的細胞形態(tài)相比雖然能維持較完整的細胞形態(tài),還是有略微損傷.從圖 5中可以看出,EDTA與Cr(Ⅵ)都能破壞細胞的結(jié)構(gòu),從而降低微生物的活性,同時加入EDTA和Cr(Ⅵ)后,EDTA減少了Cr(Ⅵ)對B. Cepacia C09G的毒性.

  圖 5降解后Burkholderia cepacia的SEM圖(10000×)(a.0.1 mmol·L-1 MG, b. 0.1 mmol·L-1 MG+0.5 mmol·L-1 EDTA, c. 0.1 mmol·L-1 MG+0.5 mmol·L-1 Cr(Ⅵ), d.0.1 mmol·L-1 MG+0.5 mmol·L-1 EDTA+0.5 mmol·L-1 Cr(Ⅵ))

  3.3.3 EDS

  通過EDS確定菌株B. Cepacia C09G生物吸附MG、Cr(Ⅵ)或者EDTA后菌株局部所含元素,從圖 6中可以看出,圖中均含有C、K、O、Na、P,這些元素主要是來自于微生物自身;此外,圖 6b和6c中還含有Cr,這表明菌株有效地吸附了Cr,來源于溶液中加入的K2Cr2O7.圖 6b和6c中分別在0.48、5.40和5.96 keV處出現(xiàn)峰,顯示存在Cr元素,這就證明了C09G菌在去除孔雀綠的同時也可以吸附Cr.而且在圖 6c與6b的對比中可以看出,當(dāng)加入了EDTA后,Cr的含量明顯減少,從0.59%降低到0.37%,說明EDTA相比于菌株對Cr的親和力更強.

  圖 6降解后Burkholderia cepacia的EDS圖(a. 0.1 mmol·L-1 MG, b. 0.1 mmol·L-1 MG+0.5 mmol·L-1Cr(Ⅵ), c.0.1 mmol·L-1 MG+0.5 mmol·L-1 EDTA+0.5 mmol·L-1 Cr(Ⅵ))

  3.3.4 FTIR

  圖 7為菌株B. Cepacia C09G吸附孔雀綠及孔雀綠和Cr(Ⅵ)后的FTIR光譜圖.由圖 7可知,2939~2927 cm-1處的峰是—CH、—CH2及—CH3的不對稱振動峰,在1655 cm-1和1546 cm-1處出現(xiàn)由氨基酸I的—NH2與氨基酸II的—COOH形成的—NH/CO的伸縮振動吸收峰,1408~1405 cm-1處分別為孔雀綠及降解產(chǎn)物芳環(huán)上的C=C的伸縮振動峰和O—H的彎曲振動峰.圖 7b相比于圖 7a,在2452 cm-1和845 cm-1處的峰消失,1070 cm-1處峰的產(chǎn)生是由于氨基酸的—NH轉(zhuǎn)變?yōu)镃=N共軛鍵.這說明菌株C09G的去除過程主要是—OH、—COOH、—NH2、—NH/CO等官能團與Cr相互作用(Nandi et al., 2009).

  圖 7菌株B. Cepacia C09G吸附孔雀綠(a)及孔雀綠和Cr(Ⅵ) (b)后的FTIR光譜圖

  4 結(jié)論(Conclusions)

  1) 0.1 mmol·L-1孔雀綠單獨存在條件下,24 h的生物降解率達到96.2%;然而,在0.5 mmol·L-1 Cr(Ⅵ)共存時,60 h的降解率僅為6.7%;當(dāng)加入0.5 mmol·L-1 EDTA螯合劑后,60 h時孔雀綠的降解率提高到18.8%.說明Cr(Ⅵ)、EDTA都會抑制孔雀綠的降解,加入0.5 mmol·L-1 EDTA螯合Cr后,可顯著降低Cr的毒性.具體聯(lián)系污水寶或參見http://www.northcarolinalenders.com更多相關(guān)技術(shù)文檔。

  2) 對于0.5 mmol·L-1 EDTA,最佳螯合Cr(Ⅵ)的濃度為0.7 mmol·L-1,此時,60 h的孔雀綠降解率上升到35.3%,Cr吸附率為24.6%,生物量也有所提高.

  3) XPS表征證明,Burkholderia cepacia C09G可將Cr(Ⅵ)還原為Cr(Ⅲ);從SEM圖譜可知,加入EDTA后,降低了Cr對B. Cepacia C09G的毒性;EDS證實加入EDTA后,降低了B. Cepacia C09G對Cr的吸附效率;FTIR說明,菌株C09V的去除過程主要是—OH、—COOH、—NH2、—NH/CO等官能團與Cr相互作用.