aV东京热强奸精品_久久久这里只有免费精品29_日韩男人的天堂_伊人中文无码综合网

客服電話:400-000-2365

污水處理厭氧氨氧化工藝研究與應(yīng)用進展

中國污水處理工程網(wǎng) 時間:2019-9-10 15:53:14

污水處理技術(shù) | 匯聚全球環(huán)保力量,降低企業(yè)治污成本

  0引言

  厭氧氨氧化反應(yīng)(Anammox)是在缺氧條件下由厭氧氨氧化菌利用亞硝酸鹽為電子受體,將氨氮轉(zhuǎn)化為氮氣的生物反應(yīng)過程。與傳統(tǒng)的硝化反硝化過程相比,厭氧氨氧化工藝無需外源有機物,供氧能耗、污泥產(chǎn)生量和CO2排放量大為減少,降低了運行費用,并具有可持續(xù)發(fā)展意義。本文對厭氧氨氧化的工藝原理、工藝形式、影響因素和應(yīng)用情況進行總結(jié)與討論。

  1工藝原理

  BRODA根據(jù)熱力學計算,在20世紀70年代提出了厭氧氨氧化的存在,認為它是自然氮循環(huán)中的一個缺失的部分。MULDER和VANDEGRAAF在20世紀90年代中期首先對此進行了實驗證明,此后人們對該過程產(chǎn)生了極大的興趣。厭氧氨氧化的反應(yīng)方程式為:

  該反應(yīng)合成細胞生物量的唯一碳源是碳酸氫鹽,表明這些細菌為化學自養(yǎng)細菌。亞硝酸鹽氧化為硝酸鹽的過程中產(chǎn)生的還原當量(能源)用于碳的固定。厭氧氨氧化細菌對底物有很高的親和力,可以將氨氮和亞硝酸鹽的含量降至較低的水平。上述反應(yīng)式中的NO2-來自于亞硝化反應(yīng)。傳統(tǒng)硝化反應(yīng)包括2個基本過程:氨氧化菌(AOB)將NH4+氧化為NO2-;亞硝酸鹽氧化菌(NOB)將NO2-氧化為NO3-。亞硝化反應(yīng)是通過調(diào)控,富集AOB,抑制或淘洗NOB,將硝化反應(yīng)控制在第1步,保持NO2-的累積率并使出水ρ(NO2--N)/ρ(NH4+-N)=1~1.3。

  2工藝形式

  厭氧氨氧化的工藝形式可以分為兩段式和一體式。兩段式系統(tǒng)的亞硝化和厭氧氨氧化過程分別在2個反應(yīng)器中進行,一體式則在同1個反應(yīng)器中進行。一體式的工藝有DEMON(DEamMONification)、OLAND(Oxygen-limitedAutotrophicNitrificationandDenitrification)、CANON(CompletelyAutotrophicNitrogenremovalOverNitrite)、SNAP(SinglestageNitrogenremovalusingAnammoxandPartialnitritation)等。兩段式工藝通常有Partialnitrification-anammox和SHARON-ANAMMOX(SinglereactorHighactivityAmmoniaRemovalOverNitrite-AnaerobicAMMoniumOxidation)等。

  一體式工藝占地小,反應(yīng)器結(jié)構(gòu)簡單,由于短程硝化和厭氧氨氧化反應(yīng)在同一反應(yīng)器中進行,基質(zhì)含量較低,因此出現(xiàn)游離氨(FA)、游離亞硝酸(FNA)毒害抑制的可能性稍低一些。但是一體化工藝生物組成更復雜,NOB在系統(tǒng)中不容易淘汰或抑制,工藝對pH、水溫更為敏感,系統(tǒng)的控制難度更大,出現(xiàn)問題后要很長時間才能恢復。

  兩段式工藝亞硝化和厭氧氨氧化反應(yīng)容易實現(xiàn)優(yōu)化控制,亞硝化反應(yīng)器中的異養(yǎng)微生物能夠降解污水中的有機物及其他有毒有害物質(zhì),降低對厭氧氨氧化反應(yīng)的不利影響,因此系統(tǒng)運行崩潰后容易恢復。但是亞硝化段中亞硝酸鹽累積易產(chǎn)生FNA抑制,且由于要將亞硝化速率和厭氧氨氧化速率進行匹配,所以系統(tǒng)的設(shè)計較為復雜。

  3影響因素

  3.1溫度

  生物硝化反應(yīng)在5~40℃均可進行,但15℃為分界點。溫度高于15℃時,AOB的生長速度高于NOB,AOB的最小泥齡小于NOB的最小泥齡,并且隨著溫度的升高,二者的差值將增加,所以高溫有利于AOB的生長。在25℃以上控制泥齡,可以有效地選擇NOB。目前的工程實例通常將亞硝化過程的溫度控制在30~35℃。

  多數(shù)研究認為,AAOB的理想溫度條件為30~40℃,但是自然條件下在溫度較低時也可以進行穩(wěn)定的厭氧氨氧化反應(yīng),RYSGAARD等指出在-1.3℃時,北極海底沉積物中的AAOB菌仍具有活性。低溫條件下反應(yīng)器中的AAOB菌的活性一直受到關(guān)注,一些研究結(jié)果表明,在亞硝化-厭氧氨氧化工藝系統(tǒng)中,溫度降到20℃以下后都測定發(fā)現(xiàn)了AAOB菌的活性,有些研究顯示,在10℃甚至更低溫度都有可能存在穩(wěn)定的厭氧氨氧化反應(yīng)。但是也有研究指出,當溫度降低到15℃時,生物膜反應(yīng)器內(nèi)開始積累NO2-,表明AAOB菌的活性受到了抑制。

  3.2基質(zhì)含量和pH

  厭氧氨氧化反應(yīng)的基質(zhì)為氨和亞硝酸,二者含量過高均會對微生物產(chǎn)生抑制作用。

  基質(zhì)氨對AAOB的影響較小,只有氨的質(zhì)量濃度超過1g/L才能抑制;|(zhì)氨的抑制主要由FA產(chǎn)生。FA對AOB和NOB均有抑制,但抑制的含量范圍不同。ANTHONISEN等報道了質(zhì)量濃度0.1~1.0mg/L的FA對亞硝化單胞菌屬(Nitrosomonas)有抑制作用,而質(zhì)量濃度10~150mg/L的FA對硝化桿菌屬(Nitrobacter)有抑制作用。在亞硝化工藝中將FA的質(zhì)量濃度控制上述2個范圍之間,NOB就會被抑制而產(chǎn)生NO2-積累。

  基質(zhì)中的FNA對AOB和NOB均有抑制,而離子態(tài)亞硝酸鹽NO2-的影響較小。FNA對AOB和NOB的抑制質(zhì)量濃度為0.01~1mg/L,哪種細菌對FNA具有更高的耐受性,目前的研究結(jié)果仍相互矛盾。NO2-對AAOB的影響較大,當NO2-的質(zhì)量濃度高于100mg/L時,AAOB活性被完全抑制。

  pH一方面影響了AOB、NOB、AAOB等微生物的生長活性,另一方面影響了NH4+和FA以及NO2-和FNA之間的化學平衡。一般而言,在中性偏堿性條件下,AOB和AAOB才能表現(xiàn)出相對較高的生長活性。AOB適宜生長的pH是7.0~8.6,AAOB適宜生長的pH為6.5~8.8。pH較高時,化學平衡向生成FA方向進行;pH較低時,化學平衡向生成FNA方向進行。當pH分別大于8.0和低于6.0時,F(xiàn)A和FNA在體系內(nèi)所占比例迅速增大。經(jīng)計算,35℃水溶液中總NO2--N的質(zhì)量濃度為500mg/L、pH為7時,F(xiàn)NA的質(zhì)量濃度只有0.1mg/L。所以當pH大于7時,F(xiàn)NA對AOB和NOB的抑制作用較為有限。

  3.3DO含量

  AAOB為嚴格厭氧菌,STROUS等指出,在DO含量為0.5%~2.0%空氣飽和度時,AAOB活性被完全抑制[6]。但該抑制是可逆的,DO消除后,AAOB的活性可以恢復。AOB和NOB都是嚴格好氧菌,當AAOB和AOB共存在系統(tǒng)中時,AOB消耗了DO,所以即使DO的質(zhì)量濃度在高于0.2mg/L的條件下,AAOB也可以保持正常活性,這使得亞硝化結(jié)合厭氧氨氧化工藝的一段式系統(tǒng)成為可能。實際工藝中還利用顆粒污泥和填料富集微生物,形成DO內(nèi)外不同的微環(huán)境,為AAOB和AOB在系統(tǒng)中共生創(chuàng)造條件。

  好氧菌AOB和NOB對DO有競爭作用,二者的DO半飽和系數(shù)分別為0.74~0.99mg/L和1.4~1.75mg/L,所以AOB具有更好的氧親和力。在實際工藝中,通常將DO含量控制在較低的水平,可以使AOB優(yōu)先獲得有限的氧,抑制NOB的活性。文獻中報道的抑制NOB,維持AOB活性的臨界DO含量各不相同。RUIZ等指出,臨界DO的質(zhì)量濃度宜控制在1.7mg/L以下;而HANAKI等認為,在25℃時將DO的質(zhì)量濃度降至0.5mg/L,AOB沒有受到明顯影響,而NOB活性下降。除了直接控制DO含量,也可以利用生物膜和顆粒污泥內(nèi)存在傳質(zhì)阻力,間接限制DO含量,抑制NOB。

  3.4有機物

  可生物降解有機物不直接影響AAOB,但能誘導反應(yīng)器內(nèi)普通異養(yǎng)菌(OHO)的生長。由于AAOB的生長速率比OHO低得多,當存在過量的有機碳時,異養(yǎng)細菌將占據(jù)反應(yīng)器的主導地位,因而限制了AAOB生長的空間和底物。通常,在一體式厭氧氨氧化工藝中,進水可降解COD和總NH4+-N的質(zhì)量濃度比需要低于0.5。另一方面,如果進水中含有一定含量的可降解有機物,那么出水中的硝酸鹽可以被去除,所以TN去除率是提高的。

  VEUILLET等發(fā)現(xiàn),當進水中慢速降解COD:ρ(NH4+-N)低于0.5時,出水ρ(NO3--N)/ρ(NH4+-N)約4%;當COD:ρ(NH4+-N)在1:1~1.5:1時,出水ρ(NO3--N)/ρ(NH4+-N)約1%。一些研究指出,當進水中含有醋酸鹽、甲醇等其他有機物時,COD:ρ(TN)達到2左右時,AAOB菌的活性受到抑制。LACKNER對14個生產(chǎn)性反應(yīng)器測試后指出,進水COD:ρ(TN)從1提高至1.5后,生物膜系統(tǒng)對TN的去除率沒有降低。

  JENNI等指出,在懸浮生長系統(tǒng)中,只要泥齡足夠,進水COD:ρ(TN)提高至1.5時,AAOB可以與OHO共存。但進水COD:ρ(TN)最好低于1:1。

  3.5金屬離子

  鐵是細胞血紅素的合成元素,對AAOB的影響較大,相對Fe3+,F(xiàn)e2+更容易促進AAOB的生長,提高其活性。Fe2+還可以替代氨作為電子供體,F(xiàn)e3+、錳離子也被用作厭氧氨氧化代謝中的電子受體。在多種電子受體和電子供體存在的代謝體系下,AAOB菌面臨的競爭壓力較小,厭氧氨氧化過程也更具穩(wěn)定性。Ca2+和Mg2+是微生物的細胞組分,Mg2+、Cu2+、Zn2+是酶的激活劑,能夠提高酶活性來促進微生物的代謝。目前的研究皆證明少量的金屬離子對AAOB菌有積極影響,但是金屬離子含量過高則會對AAOB菌產(chǎn)生毒性作用。

  4微生物特征

  AOB可分為5個屬,即Nitrosomonas、Nitrosospira、Nitrosococcus、Nitrosolobus、Nitrosovibrio,NOB則主要包括Nitrobacter、Nitrospina、Nitrospira和Nitrococcus4個屬。AOB和NOB廣泛分布于土壤、淡水、海洋及其他環(huán)境中[18]。多數(shù)AOB和NOB為化能自養(yǎng)型微生物,分別以氧化氨和亞硝酸鹽釋放的化學能為能源,以CO2為唯一碳源,少數(shù)為兼性自養(yǎng)型,可同化有機物。AOB和NOB形態(tài)各異,均為無芽孢的革蘭氏陰性菌,有復雜的細胞膜結(jié)構(gòu),有些借助鞭毛運動,如Nitrosolobus,有些無鞭毛不能運動,如Nitrospira。一般認為AOB與NOB之間存在共生關(guān)系。AAOB菌是一類功能菌種,都屬于浮霉菌門,目前發(fā)現(xiàn)有5屬17種,全部為自養(yǎng)菌。其中,Brocadia、Kuenenia、Jettenia和Anammoxoglobus4個屬由污水處理系統(tǒng)中獲得,Scalindua發(fā)現(xiàn)于自然生態(tài)系統(tǒng)中。AAOB為革蘭氏陰性菌,呈不規(guī)則球形、卵形等,直徑0.8~1.2μm。AAOB細胞壁表面有火山口狀結(jié)構(gòu),少數(shù)有菌毛。AAOB的細胞被厭氧氨氧化體膜(Anammoxosomemembrane)、細胞質(zhì)膜(Cytoplasmicmembrane)、胞漿內(nèi)膜(Intracytoplasmicmembrane)分隔成3個部分,分別為核糖細胞質(zhì)(Riboplasm)、厭氧氨氧化體(Anammoxosome),以及外室細胞質(zhì)(Paryphoplasm)。2類硝化細菌和厭氧氨氧化菌生長習性見表1。

  5工程化應(yīng)用

  在厭氧氨氧化工藝的實際應(yīng)用方面,2002年,帕克公司在鹿特丹Dokhaven污水處理廠建造了世界第1座生產(chǎn)性厭氧氨氧化反應(yīng)器,采用SharonAnammox系統(tǒng)處理污泥脫水液。此后,荷蘭、德國、日本、澳大利亞、瑞士和英國等地也相繼建立了共100多座厭氧氨氧化廢水處理廠,除了污泥消化液,處理的廢水還包括垃圾滲濾液、養(yǎng)殖場廢水、食品廢水等。目前,實際工程應(yīng)用的厭氧氨氧化技術(shù)可以分為懸浮污泥統(tǒng)、顆粒污泥和生物膜系統(tǒng)。具體聯(lián)系污水寶或參見http://www.northcarolinalenders.com更多相關(guān)技術(shù)文檔。

  5.1懸浮污泥系統(tǒng)

  AOB和AAOB生長緩慢,世代周期長,在普通懸浮污泥系統(tǒng)中容易流失,所以懸浮污泥工藝常采用序批式活性污泥法反應(yīng)器(SBR)形式截留微生物。

  在所有的SBR厭氧氨氧化技術(shù)中,80%為DEMON工藝。該工藝首先是在奧地利的Strass污水處理廠得到應(yīng)用,其核心是通過監(jiān)測pH的變化,來調(diào)整曝氣時間,進而調(diào)整短程硝化和厭氧氨氧化的平衡;另一方面,該工藝利用水力旋流器調(diào)節(jié)AAOB和AOB的泥齡,微生物在離心力的作用下會被分為2部分,較輕質(zhì)的AOB從頂部溢流,較重的AAOB聚集在底部回流至反應(yīng)器。Strass污水處理廠實現(xiàn)了85%以上的自養(yǎng)脫氮效率。

  采用DEMON工藝的污水處理廠還包括瑞士的Glarnerland和Thun污水處理廠、德國的Heidelberg和Plettenberg污水處理廠。目前,華盛頓BluePlains污水處理廠正在建設(shè)的DEMON工藝是全球最大的厭氧氨氧化工程,設(shè)計氮負荷為9.072t/d。

  5.2顆粒污泥系統(tǒng)

  顆粒污泥系統(tǒng)的一個典型案例是帕克公司在鹿特丹建立的Anammox反應(yīng)器,早期的測流工藝傾向于采用兩段式系統(tǒng),所以實際運行時該Anammox反應(yīng)器與之前建好的亞硝化SHARON反應(yīng)器進行耦合,形成了Sharon-Anammox反應(yīng)系統(tǒng),該系統(tǒng)的啟動經(jīng)歷了3.5年。隨后帕克公司又開發(fā)了一體式Anammox反應(yīng)器。兩段式系統(tǒng)中的厭氧氨氧化反應(yīng)器和一體式反應(yīng)器均采用上向流連續(xù)式運行,內(nèi)置斜板沉淀池,實現(xiàn)了對污泥顆粒的截留。

  目前,一體式反應(yīng)器的應(yīng)用較為普遍,反應(yīng)器內(nèi)DO的質(zhì)量濃度控制在1mg/L左右,顆粒污泥內(nèi)外形成了DO含量梯度,外表適宜生長AOB,內(nèi)部生長AAOB,密度較小的異養(yǎng)菌絮體則排到系統(tǒng)外。穩(wěn)定運行時,TN負荷可達4.8kg/(m3·d)。

  5.3生物膜系統(tǒng)

  目前,生物膜形式的厭氧氨氧化工藝主要有DeAmmon和ANITATMMox等。其中,DeAmmon工藝于2001年由Purac公司和Hannover大學聯(lián)合開發(fā),在德國Haittingen污水處理廠首先得到應(yīng)用。工藝由3個MBBR反應(yīng)池和1個脫氣池組成,3個反應(yīng)池可以根據(jù)需要以串聯(lián)或者并聯(lián)的方式連接,MBBR的填充率為40%~50%。

  反應(yīng)池的每個分區(qū)都設(shè)置間歇曝氣,曝氣段和非曝氣段的時間分別為20~50min和10~20min,具體時間通過監(jiān)測在線電導率實施調(diào)整。工藝對TN的去除率達70%~80%,實際運行TN負荷為180kg/d。

  ANITATMMox是Veolia開發(fā)的厭氧氨氧化工藝,該工藝于2011年首先在瑞典的Sj觟lunda污水廠得到應(yīng)用,在測流系統(tǒng)中主要采用一體化的MBBR反應(yīng)池。ANITATMMox可以采用純MBBR生物膜或者泥膜混合的IFAS形式。純生物膜工藝AAOB菌在填料的最內(nèi)層,AOB在外層;IFAS工藝AAOB主要在填料上,AOB在懸浮污泥中。ANITATMMox主要控制的參數(shù)是DO含量,可以簡單的將DO含量控制在一定范圍,或者通過氨氮去除率、硝酸鹽生成量和氨氮去除量的比來實時控制DO含量。純MBBR系統(tǒng)DO的質(zhì)量濃度控制在0.5~1.5mg/L,IFAS系統(tǒng)DO的質(zhì)量濃度控制在0.3~0.8mg/L。

  6主流工程化應(yīng)用

  目前,厭氧氨氧化技術(shù)研究與工程應(yīng)用主要集中在工業(yè)廢水和污泥脫水液、垃圾滲濾液等領(lǐng)域,對于城市污水的應(yīng)用研究還非常有限。城鎮(zhèn)污水處理量大、但是氨氮含量和水溫相對較低、成分也更為復雜,開發(fā)適合城鎮(zhèn)污水的主流工藝具有重要的現(xiàn)實意義,同時也面臨著更大的挑戰(zhàn)。厭氧氨氧化技術(shù)用于城市污水仍具有許多較為突出的問題有待解決。例如,NOB的有效抑制和AAOB的有效截留等。

  Strass污水處理廠最先開啟了向主流厭氧氨氧化方向的邁進。該廠將測流厭氧氨氧化系統(tǒng)剩余的AAOB和AOB補充到主流,雖然實現(xiàn)了AAOB菌的富集,但是該廠的主流厭氧氨氧化效果仍不理想,主要是亞硝化過程不穩(wěn)定。實驗顯示,NOB菌能適應(yīng)低氧環(huán)境,因此低氧運行并不成功,而間歇曝氣等相關(guān)抑制NOB的技術(shù)方法仍在探索中。

  新加坡的樟宜污水廠率先在主流工藝中成功實現(xiàn)了穩(wěn)定的厭氧氨氧化,經(jīng)過核算,該廠主流自養(yǎng)脫氮過程對TN的去除貢獻了62%。該廠采用分段進水多級A/O工藝,系統(tǒng)HRT為5.8h,污泥停留時間(SRT)為5d,缺氧區(qū)和好氧區(qū)各占2.5d,污水溫度全年保持在28~32℃。該廠好氧區(qū)短程硝化作用很明顯,曝氣池亞硝酸鹽累積率為76%,缺氧區(qū)內(nèi)氨氮和亞硝酸鹽氮也得到了同步去除。該廠較高的水溫是實現(xiàn)穩(wěn)定亞硝化的先天優(yōu)勢,缺氧、好氧交替運行和短泥齡的工藝特征是實現(xiàn)穩(wěn)定亞硝化的關(guān)鍵原因。

  另外,針對厭氧氨氧化反應(yīng),研究人員提出了繁殖快、生長周期短的AAOB也可以存在于泥齡較短的污水處理系統(tǒng),已有相關(guān)的試驗證明了該結(jié)論。

  7結(jié)語

  脫氮和能量自給已成為污水處理的2大目標。傳統(tǒng)的生物脫氮過程在曝氣和混合過程中消耗了能量,在反硝化和pH控制過程中消耗了化學藥劑。而短程脫氮(包括短程硝化和厭氧氨氧化)在能耗和藥耗方面均具有較大的優(yōu)勢。經(jīng)過20多年的發(fā)展,短程脫氮已成功應(yīng)用于測流等高氨氮廢水的處理工程中。

  但是作為一項新技術(shù),短程脫氮仍有許多問題尚未解決:

  1)AAOB菌生長緩慢,需要研究反應(yīng)器的快速啟動方法,實現(xiàn)AAOB的快速有效富集,縮短反應(yīng)器的啟動時間;

  2)AAOB對環(huán)境比較敏感,需確定厭氧氨氧化工程對不同成分廢水處理的適宜性,并提出避免有毒物質(zhì)對AAOB產(chǎn)生抑制和毒害的方法;

  3)主流厭氧氨氧化方面,需要研究提高工藝運行的穩(wěn)定性,特別是提高亞硝化過程中亞硝酸鹽的累積率和AAOB在低溫條件下的活性等。(來源:《水處理技術(shù)》 作者:夏瓊瓊等)